The Blockchain Litmus Test

T.D. Smith
Adventium Labs
Minneapolis, MN
tyler.smith@adventiumlabs.com

Abstract—Bitcoin’s underlying blockchain database is a novel approach to recordkeeping that has the potential to decentralize big data. Bitcoin’s success has inspired a multitude of spinoff projects hoping to use blockchain as a distributed database for records-management innovation in other fields. Misconceptions and exaggerations about blockchain and its capabilities are pervasive in the media. Drawing on perspectives from archival science, dependable computing, and secure computing, this paper surveys current applications, research, and critiques of blockchain to provide an objective assessment of its benefits and limitations. Based on the findings of the survey, this paper proposes three criteria that predict success for blockchain-based data management projects, briefly: dependability, security, and trust.

Keywords—bitcoin; blockchain; archival science; dependability; security; trust; dependable and secure computing;

I. INTRODUCTION

In 2009 a person or persons operating under the pseudonym Satoshi Nakamoto created the currency called Bitcoin [43]. Bitcoin was the first major digital currency—a medium of exchange existing only in the memories of thousands of computers around the world. Bitcoins can change hands in transactions with no requirement for trust between participants. Bitcoin achieved this global system of records-management using a distributed database called blockchain. 1 This paper provides a survey of blockchain research and proposes criteria for use by stakeholders considering blockchain technology.

The Bitcoin blockchain is a public ledger of every Bitcoin transaction ever recorded. The Bitcoin blockchain does not store “coins,” it stores records of transactions. Approximately every ten minutes a new block in the Bitcoin blockchain is signed by a Bitcoin miner. Bitcoin’s blockchain is replicated on every computer in its network, giving it high redundancy and availability.

Blockchain’s use has begun to grow in non-currency applications, expanding into big data fields like medical records. These applications have traditionally been supported by centralized databases, a storage method for which concerns like maintainability and scalability are well understood. These concerns exist in all data management applications, whether they are built on a relational database or on a blockchain. Paired with blockchain’s features of redundancy and availability are significant limitations on how a blockchain-based application can change and grow.

This paper includes a survey of current blockchain application research, initiatives, and critiques, focusing on work in the fields of archival science, dependable computing, and secure computing. Based on the available literature, this study proposes that a blockchain can provide a near-immutable record of anything, provided the following:

1) The content of the blockchain must be dependably accessible to users.
2) The blockchain and associated applications must be secure.
3) The blockchain and associated applications and procedures must be trustworthy.

This study presents an overview of the working of Bitcoin and blockchain, including a discussion of common blockchain misconceptions. Using Bitcoin’s blockchain as a reference point, academic perspectives on blockchain, cybersecurity, and records-management are presented with their common threads distilled into predictors of success. Finally, these predictors are applied to a set of current blockchain-based initiatives.

The following projects are analyzed in this paper:
• MedRec: Blockchain for Medical Records
• Storj (Metadisk): Blockchain for Distributed Cloud Storage
• Blockchain for the Internet of Things
• Bitcoin for Decentralized Trusted Timestamping

II. BITCOIN IMPLEMENTATION OF BLOCKCHAIN

Bitcoin is the de facto reference implementation of a blockchain and serves as an example of what makes a blockchain project successful. Bitcoin is not the first technology to employ blockchain or similar hash-chain approach. 2 Nor is Bitcoin universally accepted as successful—this paper cites several sources critiquing elements of Bitcoin. However, the economic notoriety of Bitcoin has spurred a high level of interest in blockchain’s potential for distributed data management, and with it confusion regarding Bitcoin and blockchain’s features and capabilities. Bitcoin’s $41 billion

1In this paper Bitcoin with an upper-case B refers to the software and source code of the cryptocurrency; bitcoin with a lower-case b refers to individual units of the currency.

2For example, the host integrity checker Samhain introduced in 2001 uses a hash-chain strategy to assert authenticity of warning messages[5].
market cap places it in the public eye and positions it as a useful reference point in evaluating blockchain-based projects [46].

Several variations on Bitcoin’s use of blockchain are in development, for example tweaking its block verification proof mechanism or storing generic contracts instead of transactions. These approaches aim to reduce the cost of blockchain verification, reduce the size of the blockchain, or ease the adoption of blockchain in non-currency applications. This paper focuses on Bitcoin-style proof-of-work blockchains, noting where individual projects deviate from the Bitcoin block verification approach.

A. What Bitcoin Is

Bitcoin is a collection of computers operating on a common protocol defined by the Bitcoin source code [1]. Adherence to this protocol is democratic—the majority of computers running the software determine the Bitcoin rules. Just as a U.S. one-dollar bill has value because most Americans agree it does, a bitcoin has value because a majority of users say it does.

How Bitcoins are Made: Transactions with bitcoin are recorded in the Bitcoin blockchain, a continually growing ledger of transactions keeping track of who owns what. Bitcoins exist solely in the digital realm, and each bitcoin can be traced back to its inception through the blockchain. Each time a new block is signed, the signer is allowed (by the community willingly signing subsequent blocks) to give itself new bitcoin(s).

How Bitcoins are Verified: Bitcoin uses a computationally intensive proof-of-work mechanism to ensure the integrity of its blockchain. Bitcoin miners search for a particular value of each new block’s nonce that causes the block’s SHA256 hash to be an unusually small value. The nonce is a part of each transaction block in the Bitcoin blockchain that is allowed to have an arbitrary value. However, a block is not considered to be signed unless a miner has found a nonce value for that block that causes the SHA256 hash of the block to fall below a known threshold. Verification of a block’s signature is computationally easy, requiring a single SHA256 checksum. Finding a new nonce is computationally hard, requiring many checksum calculations. Each block’s checksum includes the checksum of the prior block. The longer the blockchain grows, the more difficult forgery becomes [43].

Proof-of-work allows Bitcoin to operate in a pseudo-democratic, decentralized manner. Participants expend computation resources executing the SHA256 hash function on blocks of transactions. The difficulty inherent in signing Bitcoin transaction blocks makes Bitcoin a computational-majority rules democracy. As long as the majority of participants performing proof-of-work operations are honest, the integrity of the blockchain, and thus of Bitcoin, is guaranteed [32].

Maintenance of Bitcoin’s blockchain is fundamentally and necessarily expensive. If signing blocks was computationally trivial, malicious actors could sow chaos by rapidly building and signing fraudulent blocks of transactions. Even though Bitcoin requires public key signatures on transactions, a malicious actor with sufficient processing resources could employ a “double spend” attack to effectively double his or her spending power [43].

Bitcoin mining can be done with a CPU or GPU, but specialized hardware or FPGAs can outperform general purpose processors by many orders of magnitude [48].

How Bitcoins are Spent: Bitcoin transactions use public keys to identify senders and receivers in each transaction. Asymmetric encryption guarantees that only the owner of the private key associated with a given public key can sign a legitimate message.

Users maintain wallets, which are lists of their public keys and the bitcoins they have received in transactions using those keys. Users never “own” bitcoins. Rather, they own the keys associated with transactions showing they received bitcoins.

B. Bitcoin and Blockchain Misconceptions

Bitcoin’s success and continued fluidity are the result of millions of dollars of computer hardware and electricity fueling transaction verification. News sources, research projects, and marketing materials frequently contain misleading statements about the capabilities of Bitcoin and blockchain:

- **Blockchain is not cloud storage.**
 - “Enter The Blockchain: How Bitcoin Can Turn The Cloud Inside Out” [33].
 - “The Future of Cloud Storage: Blockchain-based end-to-end encrypted, distributed object storage” [6].

A blockchain must be replicated on every machine in the network [43]. The amount of data stored for each transaction is necessarily small. Bitcoin, for example, allows 80 bytes of user-specified data per transaction (storage of arbitrary data in transactions is discouraged, see [7] [9]). A blockchain can reasonably store pointers to data, but it is unrealistic to use a blockchain to store large quantities of data. Any data in the blockchain is replicated by all participants, meaning the storage required for each participant scales linearly with the number of participants. Any application attempting to store large amounts of data for a large number of participants would rapidly outpace the participants’ storage capacity. The articles referenced above conflate the terms blockchain and cloud, but really refer to

3 All dollar values in this paper refer to U.S. dollars.

4 Even with its 80 byte limitation, Bitcoin’s blockchain has already grown to over 100 gigabytes of data that must be stored by every participant [2].
blockchain-based storage of metadata with reliance on traditional means of storing the actual data.

- **Blockchain is not immutable.** A blockchain is hard to modify and easy to verify, but it is not immutable:
 - “[Blockchain] is an immutable ledger of blocks...” [16]
 - “[Blockchain provides] Tamper-proof Data” [26].

A blockchain is fundamentally difficult to modify, but it is impossible to guarantee immutability. The blockchain-based software platform Ethereum has had four hard forks in its blockchain to date [19]. The potential for hard forks puts a burden on blockchain users to actively monitor the community on which they rely for block verification.6

- **Blockchain is not free.** Bitcoin is inefficient by design.
 - “Blockchain technologies make tracking and managing digital identities both secure and efficient, resulting in seamless sign-on and reduced fraud” [20].

The validity of a blockchain is maintained through proof-of-work, which is inherently inefficient. Maintaining the Bitcoin blockchain is estimated to cost $50,000 per hour [48].

III. Success Criteria

Lemieux presents an evaluation of blockchain-based recordkeeping systems in the context of archival science. Focused specifically on recordkeeping, she provides a taxonomy of archival concepts and their relation to trust placed in a record (see Figure 1) [37]. Lemieux notes that some elements of this taxonomy (authenticity, identity, integrity, and completeness after creation) are satisfied by a proof-of-work verified blockchain.

Avizienis et al. provide a pair of similar taxonomies regarding computer systems from the perspective of secure and dependable computing (see Figures 2, 3) [22].

To establish criteria for general purpose blockchain evaluation, this study treats Bitcoin as the representative successful blockchain project. The current work merges Lemieux’s taxonomy with those from Avizienis to encompass the broader utility of of a blockchain application, accounting for concerns addressed by all of the surveyed research (see Figure 4).

5A hard fork is a split in a blockchain that is not resolved through user consensus. A fork occurs when two blocks in a blockchain refer to the same ancestor. This can happen, for example, when two miners find different nonces for signing the same block. Normally a fork is resolved when the next block is mined—the shorter blockchain is discarded by the network and the longer blockchain is retained. When users of the network disagree with one another as to which blockchain to discard, a hard fork occurs and both blockchains are maintained, each by a subset of the original group of participants [10].

6Bitcoin had a hard fork in August of 2017. As of this writing, the impact of Bitcoin’s fork is yet to be seen [31].
Figure 4. Taxonomy of utility concepts in blockchain adopted and merged from Lemieux and Avizienis. Note that safety has been dropped because the recordkeeping systems analyzed in this paper do not directly interact with devices where physical injury is a concern.

Bitcoin’s scarcity and novelty have given it a high monetary value compared to the mining (blockchain verification) cost [48]. Miners are currently awarded with 25 bitcoins for mining a block (technically miners award themselves bitcoins, the award is verified by other miners signing subsequent blocks). A block costs approximately $10,000 to mine, so the current coin value of $1,500 (May 2017) nets them approximately $27,500 per block, less hardware costs. Becker et al. and Aste provide estimates and models for determining the cost of Bitcoin mining. The numbers vary based on energy cost and hardware capability, but there is broad consensus that blockchain requires users to make non-trivial financial investments [24].

Bitcoin’s economic incentives for block signers provides short term availability, but Lemieux observes that long term recordkeeping presents a different set of availability concerns. It is not known if Bitcoin or any other blockchain will still be in use fifty years in the future, or if the algorithms used to verify blockchain contents will still be secure. If a blockchain is used to store a hash of data stored elsewhere, loss or corruption of off-blockchain data presents a risk to the system’s availability [38].

Gervais et al. observe that even though the Bitcoin network has no central authority, it is not as decentralized as is often perceived [21]. A relatively small number of users and miners control an outsized proportion of the network. Similarly, Ethereum’s blockchain is technically distributed, but its core developers fractured its community by pushing for multiple hard forks [19]. A blockchain with inadequate miner motivation will either be outpaced by the demands of users or will run the risk of a small group of miners exerting outsized influence. Barber et al. observe that a Bitcoin mining pool (a teamed collection of miners) called deepbit at one point (2012) contributed forty percent of the computational power of the Bitcoin network and was within an order of magnitude of being capable of re-writing the entire blockchain [23].

Avizienis et al. define the term maintenance to include both repairs and “all modifications of the system that take place during the use phase of system life” [22]. The Bitcoin blockchain is highly resistant to modification and aside from its “longest chain wins” approach to branch resolution, has no repair mechanisms [43]. Maintenance of Bitcoin is facilitated by its vote-per-cpu consensus mechanism. Changes to the protocol have been minimal, but are “voted” on by the participants through their adoption of modified Bitcoin source code. However, this mechanism has made Bitcoin slow to change relative to newer cryptocurrencies.

Blockchain has several downsides compared to a conventional database. Blockchain transactions take considerably longer than single-source transactions (approximately ten minutes for Bitcoin [34]), blockchains are expensive to maintain [48], and the blockchain database requires additional software development to provide features included in traditional database implementations (The Ethereum project aims to provide some of this infrastructure [4]). The cost of this maintenance grows with the size of the blockchain and is difficult to mitigate. This problem is commonly known as blockchain bloat.

Treating blockchain bloat is difficult, and there is no single solution. Some projects like Stroj use Merkle trees to reduce the size of their blockchains, reducing the scope of the distributed record but retaining checks of its validity [8].

B. Bitcoin - Security

Security is a function of confidentiality and authenticity. Authenticity in turn is tied to identity, archival bond,
integrity, and completeness after creation (see center of Figure 4). In Bitcoin, confidentiality is partly possible thanks to its everything-on-the-blockchain approach. Bitcoin uses public/private key pairs as user identifiers [43]. Users can have any number of key pairs, so it is not naively possible to link two transactions to a single individual. However, since all Bitcoin transactions are recorded in a public ledger, it is possible to obtain clues about user identity by tracing multiple transactions [14].

Record identity in Bitcoin is trivially verifiable by each node in the network—as bitcoins originate in the Bitcoin blockchain (and never leave), the identity of a record which has been verified by the network is guaranteed [43]. However, the archival bond, or the association between records based on their shared association to a real-world activity, is not. Bitcoin’s blockchain provides the ability to trace the association of one transaction to another, but has no linkage to the real-world activity to which a transaction refers [39].

The archival bond is a concept originally introduced by Duranti and Macneil as:

the relationship that links each record to the previous and subsequent one and to all those which participate in the same activity [40].

An archival bond is created through the the common provenance shared by contemporary and related records. That common provenance comes from the association between a record and the records that proceed and succeed it in describing some shared event or entity. Storing records in a blockchain, or any other data structure, has little to do with the archival bond. The trustworthiness of the deed to a house is strengthened by its bond to loan records, insurance records, and tax records—all separate records bound together by their shared participation in the sale of the house. Blockchain can allow parties to agree on what a record says, but without common provenance with other contemporary records it is difficult to agree on what a record means.

Bitcoins only exist in the Bitcoin blockchain. This means that they can be intrinsically and absolutely verified as accurate with only the blockchain [43]. No other information is required, and the archival bond is maintained because the provenance of each transaction is well defined and known to all involved parties. The only recorded incidents of lost or stolen bitcoins have occurred as a result of user error or malware infecting an exchange [15]. Duranti and Macneil describe the archival bond as “the key to the existence of an electronic record,” explaining that any system transitioning to electronic recordkeeping must maintain the archival bond between resources [40].

Bitcoin’s integrity, or its capacity to assure that records do not change, comes from the computation power of its community of participants. Manipulating the blockchain requires gathering more computing power than the majority of nodes, and transactions require the private keys of both the sender and receiver, so transactions cannot be invented out of thin air (aside from double spending attacks).

Attacking the blockchain directly is computationally difficult but any application that uses “off-chain” resources runs the risk of lost data or value to malware or storage failure [23]. All recorded losses of bitcoin have occurred as a result of insecure third parties. Any reliance on systems outside of the blockchain weakens the security of the system as whole. Similarly, any insecurities within the blockchain application put the system at risk. $31 million of Ethereum’s Ether currency was stolen in July of 2017 by hackers exploiting a flaw in wallet software responsible for managing users’ keys [28].

Bitcoin uses asymmetric encryption (public and private keys) for users to assert ownership of bitcoins [43]. There is broad consensus in the literature that asymmetric encryption is necessary for any blockchain application—encryption and digital signatures are assumed in virtually every paper cited by this survey. A blockchain where the contents of the chain cannot be trusted has little value—the contents might be authentic but may not be accurate.

Completeness after creation refers to the both the physical integrity and the interpretability of a record over time. Lemieux uses the example of a land title. A system might preserve a digital version of the title, but if the ability to understand the title depends on additional context surrounding its creation.

Suppose a blockchain database is used to track widgets as part of a supply chain. A malicious supplier could illicitly mark them as “shipped” while taking them for himself or herself. An arbitration-free system leaves little recourse for the intended receiver. As soon as the contents of the blockchain deviate from the physical world, blockchain’s arbiter-less approach leaves the victim stranded. Levy presents a similar scenario in which a blockchain-based contract is exercised in the sale of a car. Without an arbiter, there is no recourse for a buyer who receives a lemon [35]. Grimmelmann and Narayanan similarly observe that blockchain-based transactions do not provide the liability protection bundled with traditional credit cards [30].

C. Bitcoin - Trust

Trust is a feature of accuracy and reliability. Reliability is a feature of completeness at point of creation, consistency, and objectivity/impartiality (see right side of Figure 4). Accuracy pertains to the contents of a record and the determination of whether the record reflects reality. Lemieux clarifies the distinction between the genuineness of a record and its truth-value in her taxonomy, noting, “...genuineness of the creator of the record does not imply or provide a basis for inferences about the truth-value of the facts in the record; it merely establishes that the purported creator of the record is genuine and that the creator possesses the authority to
make the record.” She cites recent issues regarding fake news, observing that the authenticity of an article does not guarantee its accuracy [37]. Bitcoin maintains accuracy because its records do not need to reflect anything in the physical world; it is sufficient for Bitcoin to just maintain numerical accuracy in its transactions.

Blockchain’s distributed nature gives it redundancy beyond what is possible with traditional database replication. The cost of this distribution is a lack of flexibility. Changes or rollbacks to the database are range in complexity from difficult to near-impossible. Correcting errors requires a community vote—leaders or organizers cannot make unilateral decisions. The rigidity of the blockchain lends user confidence to the system, but also makes resolving errors difficult—a blockchain is highly reliable but not highly repairable. In some cases users objecting to the group decision have been left on an orphan fork of a blockchain [19].

Both Avizienis and Lemieux include aspects of trust in their taxonomies, but Lemieux’s definition is broader. Lemieux’s archival science perspective on recordkeeping extends its concerns to include social issues like administrative, social, and historical accountability [40]. Lemieux observes that “There is nothing inherent in the blockchain architecture or mode of operation that influences the procedures and processes of records creation—the main determinant of whether records will be accurate and reliable” [37]. A blockchain-based application’s records are not inherently complete at the point of creation—they may depend on external procedures just like paper records. If these procedures do not enforce consistency, the application cannot be reliable.

Bitcoin maintains consistency with its rules of creation by keeping every transaction in its blockchain and relying on its user community to accept or reject blocks of transactions by signing them or ignoring them. By signing a block, a miner attests that the block has followed the rules of bitcoin (as the rules stand at that moment as regarded by the miner). By signing subsequent blocks, other miners consent to those rules [43]. Disputes regarding these rules can cause forks that break consistency with rules of creation by creating separate blockchains operating on different rules [31].

Many recent blockchain applications have aimed to reduce the need for monetary user incentives by switching from the expensive Bitcoin-style proof-of-work algorithm to so-called “proof-of-stake” verification methods. In a proof-of-stake system, nodes trivially are able to sign blocks and acceptance of the signed blocks by the network is contingent on the reputation of the signer, often determined by the signer’s wealth—signers with more at stake are more trusted. This contrasts proof-of-work, in which nodes must invest computing time to sign blocks, and blocks are accepted without concern for the signer’s reputation [29].

There are concerns that proof-of-stake systems are not objective, but instead can put poorer nodes at a disadvantage—that wealthy nodes can have an outsized role in controlling the network. A variety of approaches to this problem have been proposed, including a hybrid proof-of-work and proof-of-stake approach [49]. Babaioff et al. note that even in Bitcoin’s proof-of-work blockchain there are risks associated with user motivation. Miners are incentivized to favor transactions from which they benefit, and as such cannot be entirely trusted as unbiased arbiters [41].

IV. Project Survey

This study applies the criteria (presented in Figure 4) derived from the survey to several ongoing blockchain-based projects, giving a rating of low, medium, or high for each criterion depending on whether all of the criteria in each category were not addressed, partly addressed, or thoroughly addressed (see Table 1).

A common thread in many of these projects was use of Ethereum. Ethereum is a software platform that provides a distributed database using a blockchain verified by miners rewarded with the Ether cryptocurrency. Ethereum uses blockchain to provide a distributed database for high-availability high-assurance applications. Ethereum itself is not an application, rather it is a service that streamlines the process of building a blockchain-based project. Using such a service can improve the reliability or security of a projects infrastructure, but as explained by Lemieux cannot in of itself make a blockchain-based project viable.

A. MedRec

MedRec is a medical records-management project proposed by MIT that aims to use blockchain to improve medical record tracking. MedRec would allow medical facilities to maintain patient records, but would use blockchain to track ownership and permissions to those records. When a patient moves from one clinic to another, the patient can authorize the new clinic to access the old clinic’s records via a shared private Ethereum blockchain [4].

MedRec - Dependability: The availability of the MedRec database will depend on its capacity to readily verify transactions. There are approximately 300 million people in the United States. Let us assume for the sake of argument that each person has 10 existing medical records and adds one additional record per year. To date there have been about 250 million bitcoin transactions [13]. At an estimated 2,500 transactions per block and an estimated cost of $10,000 per block in power consumption, the projected net cost is $1 billion to verify 250 million transactions [12]. If the bitcoin proof-of-work algorithm is used in MedRec (the authors do not suggest an alternative approach, such as proof-of-stake), maintaining a blockchain for all Americans would cost approximately $10 billion at startup. Even if an abbreviated process were used for the initial setup, the...
system would cost an additional $1 billion per year to stay online.

MedRec proposes that the blockchain verification can be accomplished by incentivizing researchers to perform the mining required to sign blocks. MedRec suggests offering researchers access to anonymized patient data in exchange for this verification. There are two problems with this approach. First, maintaining a blockchain with billions of records is extremely expensive. The Bitcoin blockchain costs $50,000 per hour to verify, and MedRec’s proposed system would be at least this large. Second, MedRec does not specify a mechanism for providing medical records to researchers. In Bitcoin, miners simply grant themselves new coins. This works because the coins exist only on the Bitcoin blockchain. In the realm of medical records, there is no clear analog to “creating a coin.” Instead, the researchers need to grant themselves access to a resource that already exists—a much more nuanced problem. For example, privacy rules might require that rare conditions or loss in the history of Bitcoin have occurred when users actually planning to migrate to Ethereum [11]).

As demonstrated by Ethereum, errors in the blockchain can be partially resolved via a hard fork in which the community votes to abandon the existing blockchain and restart it at an agreed upon point. Such events are disruptive and can fracture the community of users [36] [19]. A fracture in a medical records tracking system could be catastrophic.

B. Storj

Storj aims to provide distributed cloud storage with access controlled by blockchain-distributed metadata. Members share storage space on their computers in return for rewards (typically in the form of cryptocurrency). The Storj network backs up each user’s data by splitting or padding files into shards, which are constant-size pieces of data that are stored on computers across the network [45]. Storj keeps track of ownership and permissions to these shards in a blockchain database. Each user’s content is encrypted prior to being sharded. Storj (the product) is an extension of the Storj (the project) and is aimed at decentralizing storage of user metadata. [6]. The Metadisk project provides a user interface and application framework on top of Storj [44].

Storj - Dependability: Storj motivates users to verify blocks (and thus maintain availability) by granting them cryptocurrency rewards. This approach is similar to the resource sharing used by platforms like Ethereum (Storj is actually planning to migrate to Ethereum [11]).

Storj’s developers noted early that scalability of this metadata blockchain would be a challenge. In the Metadisk/Storj approach proposed in 2014 the authors note that storing metadata for one million files would take approximately...
they propose an architecture with a Blockchain for IoT to allow for node rational. In Towards an Optimized Blockchain for the IoT, their approach uses a blockchain database to track configuration of nodes in an IoT network. This simplifies concerns for bandwidth limitations.

Figure 5. Size of the Storj blockchain from [44]. In a Bitcoin-style blockchain implementation, each node in the network must store the entire blockchain.

In their literature review, Dorri et al. note that “Security in IoT is challenging due to low resource capabilities of the fast majority of devices, immense scale, heterogeneity among devices, and lack of standardization”.

Their design addresses the first of these four issues.

Blockchain for the IoT - Dependability: Blockchain IoT avoids the economic availability concerns of blockchain proof-of-work by opting for the less expensive proof-of-stake. This approach limits the economic cost of blockchain verification but the system’s reliance on off-chain storage requires additional authentication and authorization infrastructure, potentially rendering its blockchain redundant.

The system design includes a centralized control node, a single point of failure that could similarly damage availability.

Blockchain for the IoT - Security: Dorri et al. propose a transaction-based system for controlling data access, using blockchain as a ledger of permissions. However, the blockchain IoT design relies on non-blockchain resources including cloud storage and a centralized hub. Local storage is assumed to be trusted. This reliance on off-chain storage and access control means the implementation suffers from the weaknesses observed by Lemieux—when off-chain resources are involved, the blockchain is able to guarantee authenticity but not accuracy.

The Blockchain for the IoT does not address concerns of identity. Management of user accounts and public/private key pairs is not discussed.

Blockchain for the IoT - Trust: The accuracy of Storj records is verifiable using content hashes stored in the blockchain. Unlike contract or transaction oriented projects, Storj records are not intended as a means of resolution between multiple parties. This simplifies concerns for completeness and consistency as the context of record creation is minimal—each encrypted file chunk has a single owner.

C. Blockchain for the IoT

Dorri et al. have written several papers proposing Internet of Things (IoT) applications of Blockchain [18], [17], [16]. Their approach uses a blockchain database to track configuration of nodes in an IoT network. In Towards an Optimized Blockchain for IoT they propose an architecture with a central management hub, cloud storage, and a proof-of-stake style reputation-based block signing mechanism [16].

In their literature review, Dorri et al. note that “Security in IoT is challenging due to low resource capabilities of the fast majority of devices, immense scale, heterogeneity among devices, and lack of standardization”.

Their design addresses only the first of these four issues.

Blockchain for the IoT - Dependability: Blockchain IoT avoids the economic availability concerns of blockchain proof-of-work by opting for the less expensive proof-of-stake. This approach limits the economic cost of blockchain verification but the system’s reliance on off-chain storage requires additional authentication and authorization infrastructure, potentially rendering its blockchain redundant.

The system design includes a centralized control node, a single point of failure that could similarly damage availability.

Blockchain for the IoT - Security: Dorri et al. propose a transaction-based system for controlling data access, using blockchain as a ledger of permissions. However, the blockchain IoT design relies on non-blockchain resources including cloud storage and a centralized hub. Local storage is assumed to be trusted. This reliance on off-chain storage and access control means the implementation suffers from the weaknesses observed by Lemieux—when off-chain resources are involved, the blockchain is able to guarantee authenticity but not accuracy.

The Blockchain for the IoT does not address concerns of identity. Management of user accounts and public/private key pairs is not discussed.

Blockchain for the IoT - Trust: The Blockchain IoT approach to accuracy opts for a low-cost proof-of-state block signing mechanism in which blocks can be trivially signed by nodes and those signatures will be accepted provided the signing node has sufficient reputation. Such an approach is more vulnerable to attack because a compromised node with a high reputation could rapidly forge new blocks.

Local storage used by the blockchain IoT is assumed to be trusted. This storage is a reliability risk as a single point of failure that is external to the system.

D. Blockchain for Decentralized Timestamping

Gipp et al. propose using small transactions as a low cost means of distributed timestamping [25]. Distributed timestamping could be used for trustless agreement on ordering and approximate timing of events, such as the time a particular photo was taken or a text message was sent. Their approach uses the Bitcoin blockchain, piggy-backing on the transaction verification already being conducted by Bitcoin miners.

There are a variety of potential applications for trusted timestamping. For example, instead of including a current newspaper in a photograph to provide proof of its date of origin, one could the strategy proposed by Gipp et al. to store a timestamp of a checksum of the photograph in the Bitcoin blockchain. Concerned parties suspecting the photograph of

V. CONCLUSION

Blockchain is an inherently complex and expensive technology. The value gained through blockchain’s security and redundancy must outpace its cost. There is nothing wrong with using blockchain for non-currency purposes, but the cost of accommodating blockchain’s downsides may far outpace its value. Applications meeting the criteria proposed in this paper are well positioned to succeed. Applications failing to address elements of the blockchain utility taxonomy are not.

REFERENCES

